Compositions of Boolean functions with monotone functions

Erkko Lehtonen Tampere University of Technology Finland

For a class C of Boolean functions, we say that a Boolean function f is a C-subfunction of a Boolean function g, denoted $f \leq_C g$, if $f = g(h_1, \ldots, h_n)$, where all the inner functions h_i are members of C. Functions f and g are C-equivalent, denoted $f \equiv_C g$ if they are C-subfunctions of each other. The C-subfunction relation \leq_C is a preorder on the set Ω of all Boolean functions if and only if C is a clone. If C is a clone, then \equiv_C is an equivalence relation. It is natural to ask whether there is an infinite descending chain of C-subfunctions and what is the size of the largest antichain of C-incomparable functions.

In this presentation, we focus on the monotone clones of the Post lattice: the clone M of all monotone functions and the clones M_0 , M_1 , and M_c of 0-preserving, 1-preserving, and constant-preserving monotone functions, respectively.

For $\mathcal{C} = M, M_0, M_1, M_c$, we present a characterization of the \mathcal{C} -equivalence classes, based on a simple measure of alternation of the true and false points in the hypergraph representation of Boolean functions. We also show that the \mathcal{C} -subfunction relation is well-founded, i.e., there is no infinite descending chain of \mathcal{C} -subfunctions and no infinite antichain of \mathcal{C} -incomparable functions.